A novel tetrodotoxin-sensitive, voltage-gated sodium channel expressed in rat and human dorsal root ganglia.

نویسندگان

  • L Sangameswaran
  • L M Fish
  • B D Koch
  • D K Rabert
  • S G Delgado
  • M Ilnicka
  • L B Jakeman
  • S Novakovic
  • K Wong
  • P Sze
  • E Tzoumaka
  • G R Stewart
  • R C Herman
  • H Chan
  • R M Eglen
  • J C Hunter
چکیده

Dorsal root ganglion neurons express a wide repertoire of sodium channels with different properties. Here, we report the cloning from rat, dorsal root ganglia (DRG), cellular expression, and functional analysis of a novel tetrodotoxin-sensitive peripheral sodium channel (PN), PN1. PN1 mRNA is expressed in many different tissues. Within the rat DRG, both the mRNA and PN1-like immunoreactivity are present in small and large neurons. The abundance of sodium channel mRNAs in rat DRG is rBI > PN1 >/= PN3 >>> rBIII by quantitative reverse transcription-polymerase chain reaction analysis. Data from reverse transcription-polymerase chain reaction and sequence analyses of human DRG and other human tissues suggest that rat PN1 is an ortholog of the human neuroendocrine channel. In Xenopus oocytes, PN1 exhibits kinetics that are similar to rBIIa sodium currents and is inhibited by tetrodotoxin with an IC50 of 4.3 +/- 0.92 nM. Unlike rBIIa, the inactivation kinetics of PN1 are not accelerated by the coexpression of the beta-subunits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of a voltage-sensitive calcium channel blocker on inhibition of apoptosis in sensory neurons of cultured dorsal root ganglia in adult rat

Introduction: Under pathological conditions, abnormal increase in intracellular calcium concentrations is believed to induce cell death. In the present study, a voltage-sensitive calcium channel blocker (loperamide hydrochloride) was used to investigate its role in inhibition of apoptosis in sensory neurons of cultured spinal dorsal root ganglia (DRG). Methods: L5 DRG from adult rats were di...

متن کامل

Function and solution structure of huwentoxin-IV, a potent neuronal tetrodotoxin (TTX)-sensitive sodium channel antagonist from Chinese bird spider Selenocosmia huwena.

We have isolated a highly potent neurotoxin from the venom of the Chinese bird spider, Selenocosmia huwena. This 4.1-kDa toxin, which has been named huwentoxin-IV, contains 35 residues with three disulfide bridges: Cys-2-Cys-17, Cys-9-Cys-24, and Cys-16-Cys-31, assigned by a chemical strategy including partial reduction of the toxin and sequence analysis of the modified intermediates. It specif...

متن کامل

MicroRNA-30b regulates expression of the sodium channel Nav1.7 in nerve injury-induced neuropathic pain in the rat

Voltage-gated sodium channels, which are involved in pain pathways, have emerged as major targets for therapeutic intervention in pain disorders. Nav1.7, the tetrodotoxin-sensitive voltage-gated sodium channel isoform encoded by SCN9A and predominantly expressed in pain-sensing neurons in the dorsal root ganglion, plays a crucial role in nociception. MicroRNAs are highly conserved, small non-co...

متن کامل

Purification and characterization of Hainantoxin-V, a tetrodotoxin-sensitive sodium channel inhibitor from the venom of the spider Selenocosmia hainana.

A neurotoxic peptide, named Hainantoxin-V (HNTX-V), was isolated from the venom of the Chinese bird spider Selenocosmia hainana. The complete amino acid sequence of HNTX-V has been determined by Edman degradation and found to contain 35 amino acid residues with three disulfide bonds. Under whole-cell patch-clamp mode, HNTX-V was proved to inhibit the tetrodotoxin-sensitive (TTX-S) sodium curren...

متن کامل

Isoflurane inhibits the tetrodotoxin-resistant voltage-gated sodium channel Nav1.8.

BACKGROUND Voltage-gated sodium channels (Nav) mediate neuronal action potentials. Tetrodotoxin inhibits all Nav isoforms, but Nav1.8 and Nav1.9 are relatively tetrodotoxin-resistant (TTX-r) compared to other isoforms. Nav1.8 is highly expressed in dorsal root ganglion neurons and is functionally linked to nociception, but the sensitivity of TTX-r isoforms to inhaled anesthetics is unclear. M...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 272 23  شماره 

صفحات  -

تاریخ انتشار 1997